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MOTION OF AN INCLUSION IN UNIFORMLY

AND NONUNIFORMLY VIBRATING LIQUIDS

UDC 532.582V. L. Sennitskii

An approach to constructing the quantitative nonuniformity characteristics of liquid vibrations is
proposed. A new problem of the motion of an inclusion in a vibrating liquid is considered.
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1. The motion of rigid and gas inclusions (bodies) in a vibrating liquid has been the subject of extensive
experimental and theoretical research (see, for example, [1–18]). By a vibrating liquid is usually meant a liquid
whose motion is caused by the action of vibrations.

The notions of uniformly and nonuniformly vibrating liquids were introduced in [8, 9] (see also [10]). In
[8–10], uniform and nonuniform vibrations of a liquid are defined as follows. Let a liquid do not contain inclusions
(whose motion is studied); then, the vibrations of the liquid are uniform if all particles of the liquid move at the
same velocity and the vibrations of the liquid are nonuniform if not all particles of the liquid move with at the
same velocity. The motion of inclusions in uniformly and nonuniformly vibrating liquids can differ qualitatively
[2, 3, 8–10, 12, 13, 17, 18]. In view of this, the division of vibrations of liquids into uniform and nonuniform
vibrations is the basis of their substantial classification. A natural extension of research in the direction outlined
in [2, 3, 8, 12, 17, 18] involves investigating the questions of what parameters can be used for the quantitative
characterization of the nonuniformity of liquid vibrations and what values of these parameters lead to qualitative
changes in the motion of inclusions in vibrating liquids.

The present paper proposes a method for the quantitative characterization of the nonuniformity of liquid
vibrations: the nonuniformity coefficient and the average nonuniformity coefficient of liquid vibrations are intro-
duced. A new problem of the motion of a rigid inclusion in a vibrating liquid is formulated and solved. Conditions
are found for the occurrence of the previously unknown state of the absence of mean motion of an inclusion in
a vibrating liquid. It is established that the inclusion exhibits qualitatively different behavior in uniformly and
nonuniformly vibrating liquids no matter how the nonuniformity of the liquid vibrations is slight.

2. We consider the following construction. There is a liquid which surrounds one or several bodies and is
partially or completely surrounded by one or several walls. The liquid is vibrating: The liquid is set in motion by
vibrations of the bodies and walls; the vibrations of the liquid at infinity are also possible.

We assume that Ω is the region in space occupied by the liquid, Γ is the boundary of the region Ω (including
infinity if the region Ω is not bounded or is partially bounded externally), V̂Γ is the largest magnitude of the liquid
velocity on the boundary Γ, η is a point of space that belongs to the region Ω at any time, V̂η is the largest
magnitude of the liquid velocity at the point η, ω is the closed region of space that belongs to the region Ω at any
time, and v is the volume of the region ω.

The nonuniformity coefficient of liquid vibrations at the point η and the average nonuniformity coefficient
of liquid vibrations in the region ω are defined as

kp(η) = 1 − V̂η/V̂Γ; (1)
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Fig. 1. System of coordinates, arrangement of the cylinder Q1, the wall with the boundary permeable
to the liquid, and the cylinder Q2.

kreg(ω) =
1
v

∫ ∫

ω

∫
kp dω. (2)

We note that if the liquid performs uniform vibrations, which, for example, is the case in the problem
considered in [2], then

kp(η) = 0, kreg(ω) = 0

for any η and ω.
3. We consider the first auxiliary problem. There is an ideal incompressible liquid which is not bounded

externally and contains an absolutely rigid, infinitely long circular cylinder Q1 of radius a1 (see Fig. 1). At the
initial time t = 0, the cylinder and the liquid are at rest with respect to the inertial rectangular coordinate system
X, Y, Z; the cylinder axis is parallel to the Z axis and passes through the point (−a1, 0, 0). At t > 0, the cylinder
performs specified periodic (with period T ) translational vibrations along the X axis; the position of the cylinder
is defined by the radius-vector (H − a1)eX of the point of intersection of the cylinder axis with the X axis. Here

H = A(1 − cos (2πt/T ))

(A > 0 is a constant) and eX = (1, 0, 0). It is required to determine the plane potential liquid flow.
The liquid velocity potential ϕc obeys the equation

∆ϕc = 0 (a1 < R1 < ∞) (3)

and the conditions
∂ϕc

∂R1
=

dH

dt
cosΘ1 at R1 = a1; (4)

∇ϕc → 0 at R1 → ∞; (5)

ϕc = 0 at t = 0, (6)

where R1 and Θ1 are polar coordinates in the plane Z = 0, which are related to X and Y by the equations

X = H − a1 + R1 cosΘ1, Y = R1 sin Θ1.

Problem (3)–(6) has a solution

ϕc = −a2
1

dH

dt

X − H + a1

(X − H + a1)2 + Y 2
. (7)
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4. We consider the second auxiliary problem. There is an ideal incompressible liquid which is not bounded
internally and is in contact with an absolutely rigid flat wall. The boundary of the wall is permeable to the liquid.
At t = 0, the wall and the liquid are at rest with respect to the coordinate system X, Y, Z; the wall boundary
coincides with the plane X = 0; the region occupied by the liquid beyond the wall is in the half-space X ≥ 0. At
t > 0, the wall performs specified periodic translational vibrations along the X axis; the position of the wall is
defined by the radius-vector HeX of the point of intersection of the wall boundary with the X axis; on the wall
boundary, the liquid moves along the X axis at a velocity (∂ϕc/∂X)|X=H . It is required to determine the plane
potential liquid flow beyond the wall.

The liquid velocity potential ϕw satisfies the equation

∆ϕw = 0 (H < X < ∞) (8)

and the conditions

∂ϕw

∂X
=

∂ϕw

∂X
at X = H ; (9)

∇ϕw → 0 at X2 + Y 2 → ∞, X ≥ H. (10)

Problem (8)–(10) has a solution

ϕw = ϕc + f, (11)

where f is a function of t.
In the region H < X < ∞, the liquid is nonuniformly vibrating, according to (7) and (11).
Let a2 > 0, l > 0, S0 (S0 > 2A + a2) be constants, η0 be the point (S0, 0, 0), ω0 be the closed region

[(X − S0)2 + Y 2]1/2 ≤ a2, and 0 ≤ Z ≤ l.
We assume that the values of δ = S0/a1 and ε = a2/S0 are small compared to unity and the values of

κ = A/a2 are not large compared to unity.
Using Eqs. (1), (2), (7), and (11) with accuracy up to quantities small compared to δ, we obtain

kp(η0) = kreg(ω0) = k, (12)

where

k = 2δ. (13)

According to (12) and (13), the quantities kp(η0) and kreg(ω0), which coincide with each other in the indicated
approximation, are the smaller and, hence, the liquid vibrations are closer to uniform vibrations, the larger a1 and
the smaller S0.

5. Let us pass to the primal problem. There is an ideal incompressible liquid which contains an absolutely
rigid, infinitely long, circular cylinder Q2 of radius a2 and is in contact with an absolutely rigid flat wall. The
boundary of the wall is permeable to the liquid. At t = 0, the cylinder, the wall, and the liquid are at rest with
respect to the coordinate system X, Y, Z; the cylinder axis is parallel to the Z axis and passes through the point
η0; the wall boundary coincides with the plane X = 0; the region occupied by the liquid beyond the wall is in the
half-space X ≥ 0. At t > 0, the wall performs specified periodic translational vibrations along the X axis; the
position of the wall is defined by the radius-vector HeX of the point of intersection of the wall boundary with the X

axis; at the wall boundary, the liquid moves along the X axis at a velocity (∂ϕw/∂X)
∣∣∣
X=H

; the liquid flow beyond
the wall is plane and potential; the cylinder performs translational motion along the X axis under the action of the
liquid pressure; the position of the cylinder is defined by the radius-vector

S = SeX (14)

of the point of intersection of the cylinder axis with the X axis (S > H + a2). It is required to establish how the
cylinder moves, i.e., it is required to determine the dependence of S on t.
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We assume that Φ is the liquid velocity potential, P is the liquid pressure, R2 and Θ2 are polar coordinates
in the plane Z = 0, which are related to X and Y by the equations

X = S + R2 cosΘ2, Y = R2 sin Θ2;

F = −a2l

2π∫

0

P
∣∣∣
R2=a2

cosΘ2 dΘ2 (15)

is the force exerted by the liquid in the X direction on the part of the cylinder that occupies the region ω0 at t = 0;
ρincl is the density of the cylinder, ρliq is the density of the liquid, and I is a function of t.

The coordinate S, pressure P , and potential Φ satisfy the following equations and conditions:

πa2
2lρincl

d2S

dt2
= F ; (16)

S = S0,
dS

dt
= 0 at t = 0; (17)

∂Φ
∂t

+
1
2

(∇Φ)2 +
P

ρliq
= I; (18)

∆Φ = 0; (19)

∂Φ
∂X

=
∂ϕw

∂X
at X = H ; (20)

∂Φ
∂R2

=
dS

dt
cosΘ2 at R2 = a2; (21)

∇Φ → 0 at X2 + Y 2 → ∞, X ≥ H ; (22)

Φ = 0 at t = 0. (23)

Problem(16)–(23) models the motion of a rigid inclusion — the cylinder Q2 — in a nonuniformly vibrating
liquid subjected to the vibrations from a rigid vibrator — the cylinder Q1.

6. In (19)–(23), we make the substitution

X = x + H, Y = y, Φ = χ + ϕw. (24)

As a result, we obtain the equation

∆χ = 0 (25)

and the conditions
∂χ

∂x
= 0 at x = 0; (26)

∂χ

∂r
=

dS

dt
cos θ − ∂ϕw

∂r
at r = a2; (27)

∇χ → 0 at x2 + y2 → ∞, x ≥ 0; (28)

χ = c at t = 0, (29)

where r and θ are polar coordinates in the plane Z = 0, which are related to x and y by the equations

x = S − H + r cos θ, y = r sin θ;

c = −ϕw|t=0 is a constant.
The values of λ = δ/ε2 are assumed to be not small and not large compared to unity.
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Employing the method for determining the liquid velocity potential described in [12], we find the solution
of problem (25)–(29) that satisfies Eqs. (25), (26), (28), and (29) exactly and satisfies Eq. (27) approximately,
with accuracy up to quantities proportional to a2 dH/dt and a2 dS/dt, which are small compared to ε3a2 dH/dt and
ε3a2 dS/dt, respectively. Using Eqs. (15), (18), and (24) and the indicated solution of problem (25)–(29), we obtain

F =
πa2

2lρliqS0

T 2

{
2ε

[
1 +

ε2

4s2

(
1 + 2ε

h

s

)
− 2λε2s

(
1 − ε

h

s

)]d2h

dτ2
+

ε4

2s3

(dh

dτ

)2

− ε3

s3

(
1 + 3ε

h

s

)dh

dτ

ds

dτ
−

[
1 +

ε2

2s2

(
1 + 2ε

h

s
+ 3ε2 h2

s2

)]d2s

dτ2

+
ε2

2s3

(
1 + 3ε

h

s
+ 6ε2 h2

s2

)( ds

dτ

)2}
, (30)

where τ = t/T , h = H/a2, and s = S/S0.
We assume that as ε → 0

s ∼ s0 + εs1 + . . . + ε4s4. (31)

Equations (16), (17), (30), and (31) imply the problems for s0, s1, . . . , s4. Solving these problems, we obtain

s0 = 1, s1 = s̃1, s2 = 0, s3 = s̃3, s4 = −π2

2
κ

2 ρ − 1
(ρ + 1)2

(ρ − 1
ρ + 1

+ 8λ
)
τ2 + s̃4, (32)

where ρ = ρincl/ρliq; s̃1, s̃3, s̃4 are periodic functions of τ . Using (13), (31), and (32), we have

s = 1 + Ξτ2 + s̃, (33)

where

Ξ = −π2

2
ε4

κ
2 ρ − 1
(ρ + 1)2

(ρ − 1
ρ + 1

+
4k

ε2

)
; (34)

s̃ is a periodic function of τ .
7. Formulas (14), (33), and (34) approximately define the dependence of S on t. The inclusion performs

vibrations and the mean monotonic motion along the X axis.
Let us consider the mean motion of the inclusion.
According to (33) and (34), the following statements are valid.
1. If ρ > 1, then Ξ < 0 and the inclusion moves to the vibrator.
2. If ρ = 1, then Ξ = 0 and the inclusion does not perform mean motion.
3. If 0 ≤ ρ < 1, then:
3.1. Ξ < 0 and the inclusion moves to the vibrator for k = 0 (uniform vibrations of the liquid) and for

0 < k < k∗ (slight nonuniformity of the liquid vibrations).
3.2. Ξ = 0 and the inclusion does not perform mean motion for k = k∗.
3.3. Ξ > 0 and the inclusion moves from the vibrator for k > k∗ (strong nonuniformity of the liquid

vibrations).
In statements 3.1–3.3,

k∗ =
ε2

4
1 − ρ

1 + ρ
.

Let us make a qualitative comparison of the behavior (mean motion) of the inclusion in the primal problem
of the present work with the behavior of the inclusion in the problems considered in [2], where the liquid vibrations
are uniform, and in [3] where the liquid vibrations are nonuniform. Statements 1 and 2 are valid for both uniform
and nonuniform vibrations of the liquid [2, 3]. Statement 3.1 agrees with the findings of [2]. Statement 3.3 agrees
with findings of [3]. Thus, there is agreement with the results of [2, 3]. In addition, according to statement 3.2,
there is a new, previously unknown, state of the absence of mean motion of the inclusion, which is the case for
0 ≤ ρ < 1 and the “intermediate” nonuniformity of liquid vibrations where kp(η0) = k∗ and kreg(ω0) = k∗. This
state separates the other two states of qualitatively different behavior of the inclusion, in one of which the inclusion
approaches the vibrator, and in the other, moves away from it.
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Let

ρ∗ =
1 − 4k/ε2

1 + 4k/ε2

for 0 < k < ε2/4. According to (33) and (34), the following is the case:
1) For Ξ < 0, the inclusion moves to the vibrator if 0 ≤ ρ < ρ∗;
2) For Ξ > 0, the inclusion moves from the vibrator if ρ∗ < ρ < 1.
This result implies, in particular, that the motion of inclusions in uniformly and nonuniformly vibrating

liquids can differ qualitatively no matter how the nonuniformity of liquid vibrations is slight.

REFERENCES

1. V. N. Chelomei, “Paradoxes in mechanics due to vibrations,” Dokl. Akad. Nauk SSSR, 270, No. 1, 62–67,
(1983).

2. V. L. Sennitskii, “Motion of a circular cylinder in a vibrating liquid,” J. Appl. Mech. Tech. Phys., No. 5, 620–623
(1985).

3. V. L. Sennitskii, “Motion of a sphere in a liquid caused by vibrations of another sphere,” J. Appl. Mech. Tech.
Phys., No. 4, 542–545 (1986).

4. B. A. Lugovtsov and V. L. Sennitskii, “Motion of a body in a vibrating liquid,” Dokl. Akad. Nauk SSSR, 289,
No. 2, 314–317 (1986).

5. V. L. Sennitskii, “Motion of a gas bubble in a viscous vibrating liquid,” J. Appl. Mech. Tech. Phys., No. 6,
865–870 (1988).

6. V. L. Sennitskii, “Predominantly unidirectional motion of a gas bubble in a vibrating liquid,” Dokl. Akad. Nauk
SSSR, 319, No. 1, 117–119 (1991).

7. V. L. Sennitskii, “Predominantly unidirectional motion of a compressible rigid body in a vibrating liquid,”
J. Appl. Mech. Tech. Phys., No. 1, 96–97 (1993).

8. V. L. Sennitskii, “On motion of inclusions in uniformly and nonuniformly vibrating liquid,” in: Proc. of the Int.
Workshop on G-Jitter, Clarkson Univ., Potsdam (1993), pp. 178–186.

9. V. L. Sennitskii “Motion of inclusions in a vibrating liquid,” Author’s Abstract, Doct. Dissertation, Inst. of
Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (1993).

10. V. L. Sennitskii, “Motion of inclusions in a vibrating liquid,” Sib. Fiz. Zh., No. 4, 18–26 (1995).
11. V. L. Sennitskii, “Behavior of a gas bubble in a viscous oscillating liquid in the presence of gravity,” J. Appl.

Mech. Tech. Phys., 38, No. 5, 718–723 (1997).
12. V. L. Sennitskii, “Motion of a sphere in a vibrating liquid in the presence of a wall,” J. Appl. Mech. Tech.

Phys., 40, No. 4, 662–668 (1999).
13. O. M. Lavrenteva, “On the motion of particles in nonuniformly vibrating liquid,” Europ. J. Appl. Math, 10,

Part 3, 251–263 (1999).
14. V. L. Sennitskii, “Motion of a pulsing rigid body in an oscillating viscous fluid,” J. Appl. Mech. Tech. Phys.,

42, No. 1, 72–76 (2001).
15. I. E. Kareva and V. L. Sennitskii, “Motion of a circular cylinder in a vibrating liquid,” J. Appl. Mech. Tech.

Phys., 42, No. 2, 276–278 (2001).
16. V. L. Sennitskii, “Behavior of a pulsating rigid body in a viscous liquid in the presence of gravity,” J. Appl.

Mech. Tech. Phys., 42, No. 5, 814–817 (2001).
17. O. S. Pyatigorskaya and V. L. Sennitskii “Motion of a rigid body in a nonuniformly vibrating liquid,” Vestn.

Novosib. Gos. Univ., Ser. Mat., Mekh., Inform., 2, No. 2, 55–59 (2002).
18. O. S. Pyatigorskaya and V. L. Sennitskii, “Motion of a sphere in a liquid caused by vibrations of another

sphere,” J. Appl. Mech. Tech. Phys., 45, No. 4, 542–545 (2004).

70



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /MathBold-Italic
    /MathCm-Italic
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


